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Abstract

The equation for the orientation probability function of slender cylindrical particles suspended in planar turbulent flows

was investigated. After ensemble averaging, the equations for the mean and fluctuating probability function were derived. The equation for

the fluctuating probability function appearing in the equation of mean probability function was solved by using the method of characteristics

analysis. The orientational dispersion terms due to the random motion of cylindrical particles in the equation of mean probability function

are related to the mean probability function and the Lagrangian fluid velocity correlations. The evolution of the mean probability function

was described by a modified orientation-space-convection equation, where the dispersion terms account for the randomizing effect of the

turbulence.
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Understanding the microstructure of slender
cylindrical particle suspensions subject to turbulent
flows is currently of great importance in both theoret-
ical investigation and practical applications. The prac-
tical importance arises from many industrial process-
es, such as pulp and paper industry, where nearly all
fiber processing and papermaking is performed at high
speeds in turbulent fluids. It is also of theoretical im-
portance in understanding how to model fluid — par-
ticle interactions in non-spherical particle suspensions
in turbulent flows.

Jeffery!!! has solved the motion of a single non-
spherical particle in an unbounded linear shear flow.
He found that the particle rotates in one of a family of
periodic and close orbits around the vorticity axis.
However, external actions, such as particle-particle
interactions or fluid random motion, can cause small
disturbances of the particles. Several authors
( Shagfeh & Fredrickson!?!, Koch!®!, Petrich et
al.[*1 Rahnama et al.'®!, and Shi & Lin®) have
investigated the particle-particle interactions in simple
planar flows. However, there are few investigations
on non-spherical particle suspensions subject to turbu-
lent flows because of the heavy computational require-

ments in modeling the translations and rotations of a
great number of particles. Cho et al.!”! provided one
of the first investigations of the effect of turbulence
on the orientation of high aspect ratio ice crystals.
Krushkal & Gallily[g] theoretically calculated the ori-
entation distribution function of small fibers in turbu-
lent flow by using the Fokker-Planck equation. Re-
cently, Olson & Kerekes!®! obtained the fiber transla-
tional and rotational dispersion coefficients with the
assumption that the relative velocity of particle and
fluid can be neglected. Lin et al. (10] analyzed the be-
havior of fiber suspension and fluid stress in an evolv-
ing mixing layer of fiber suspensions. You et al. (11
studied the stability in the channel flow of fiber sus-
pensions with spectral method. Lin et al. 012,13] g d-
ied the orientation distribution of fibers in a mixing
layer and a turbulent pipe flow, respectively. Gao et
al. ['*] derived the translational and rotational disper-
sion coefficients of fiber taking the balance between
the Stokes drag and virtual mass force into considera-
tion, and discussed the dispersion property of fibers,
long and short.

All these investigations mentioned above, how-
ever, are performed based on the Lagrangian ap-
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proach, which suffers from large computational re-
quirements. Therefore, the purpose of this paper is to
give a model to describe the cylindrical particle orien-
tations in planar inhomogeneous turbulent flows based
on the Eulerian approach. Olson & Kerekes'®! have
derived the orientational dispersion coefficients for
fibers in the homogeneous turbulent flows. In their
model, the turbulent dispersions are independent of
the particle orientations due to the homogeneous tur-
bulence. However, in the inhomogeneous flows, the
turbulent dispersion coefficients are not the same at
different particle orientations. Therefore, in this pa-
per, we will derive the equation for the orientation
probability function of cylindrical particles suspended
in turbulent planar flows, then give the turbulent dis-
persion coefficients by using the derived equation,
from which we can make predictions of the state of
the cylindrical particles during flows and also further
investigate the effect of the existence of particles on
turbulent flows.

1 The equation of the probability function

We consider a suspension with n rigid, cylindri-
cal particles per unit volume; each particle has the
length of L and diameter of D. The particle aspect
ratio, L/D, is assumed very large so that the end ef-
fect of particles can be neglected. The particle con-
centration considered in this paper is nL3<1, which
means the suspension is dilute.

An important step in the present model is to sim-
plify the expression for the particle motion. To ac-
complish this goal we make the following assump-
tions:

(i) Particles are regarded as moving with the
fluid particle at their centers, that is, the centroids of
the particles move like points. Particles are small e-
nough so that the fluid velocity gradients are assumed
homogeneous within the particle lengths. According
to Jeffery’ s result!!! for the particle with infinite as-
pect ratio, the time rate of change of the particle ori-
entation is given by

pi = Ui Py — U Pipspis (1)
where u; ; = du;/9x; is the fluid velocity gradient,
pi is a component of unit vector parallel to the particle
axis (Fig.1);

p1=sinfcosé,
P2 = sinfsin$, (2)
p3 =cosf.
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Fig. 1. A cylindrical particle in the spherical coordinate system.

(ii) A distribution function ¢(x;, p;, t) is intro-
duced to represent the probability that the test parti-
cle selected has a specific location z; and orientation p;
at time ¢. The distribution function ¢ can be as-
sumed as:

$(xiypyst) = nzx;, 1) (xi, pjat), (3)
where n is a position-dependent number density. We
further assume that there are no concentration gradi-
ents so that n is a constant. To be consistent with
the definition of ¢, ¢ is normalized:

JSD(I,',P;‘, t)dp; = 1. (4)

The governing equation for ¢ depends on the
conservation of cylindrical particles in the orientation
space. The transient equation for particle probability
distribution function is given by

— + = 0.
ot op; ()

For planar flows, we write the velocity gradients
as
U1 =~ Uz2 = &g,

Ui,2 = €25 Uz = €3.

(6)

In the spherical coordinate system as shown in
Fig. 1, the steady state equation for the orientation

probability function has the following form:
. ¢ - Bg
06— +¢ =+ 50 =
o0 PP T (7

where

6 = sinfcosd X (cos2e| + sin$cosde, + sind cosde ;)

=sinfcosf* f($, €1, €5, €3), (8)
$=— 2singcosde; — sin’de, + cos’ e,

= g(¢, €1» 62,53), (9)

s =— 3sin’f - f($,e1,62,€3). (10)

Using the method of characteristics, Eq. (7) can
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be changed into three simple differential equations:

% = 9= sinfcosff ($), (11)
92 b= g9, (12)
%{;2 + 5 = 0. (13)

The boundary condition is

(8 = 0,9 = n/2,z = 0) = c(const). (14)
Then we have

_ k(o) _  cos’c

T owste € cos’ 6’

where % is an orbit constant, which accounts for the

(15)

different characteristic; ¢ is a constant determined by
the normalization condition (4). From Egs. (11) and
(12) we have

[
r =j g~ ($0)d#o, (16)
/2

¢
_J f(¢0)‘g‘l(¢o)d¢o .
w/2
(17)

tano = tanf * exp

Substituting Eq. (17) into Eq. (15), we obtain
the final expression for the orientation probability
function

¢ = c[:coszﬁ + sin®f
3

2

* exp

- zj:/szo) 57 ($0)dso| |
(18)

2 Solution of the fluctuating equation

As a description in the Eulerian field, the proba-
bility function is the statistical quantity in the orienta-
tion space. Given a known flow field, the probability
function at a certain position can be determined by the
local transient velocity gradients. To estimate the
random effect of turbulence on the behavior of the
cylindrical particles, the fluid velocity field should be
averaged by using the ensemble average method (or
volume average method in the position space). For
turbulent suspensions, the particles undergo mean
motion due to the mean fluid velocity and random mo-
tion due to the fluctuating component of the fluid ve-
locity. Thus, the probability function ¢ can be ex-
pressed as:

P = g_p + 9, (19)
where ¢ is the mean probability function, which
means the volume average of ¢ in the position space,
and ¢ is the fluctuating probability function. Aver-

aging Eq. (7), we obtain the equation for ¢

Taf —agg - —
g +é— 4+ =
VARSVRRL RS (20)
and then get the equation for ¢
~og’ Tog -
R R
20 ¢ R Q, 2D
where
_ ./agp’ . a¢’
Po_p2 3% -
20 P e 0 (22)
p /a§_0 y /89_9 a
==0 = - ' —5p. 2
Q 20 $ 2 s'e (23)

Equation (20) is the key equation to understand
the mean motion of the cylindrical particles suspended
in turbulent flows. The expression for P in Eq.(23)
includes several correlation terms, which require the
information of the evolution of ¢ . If we assume that

P =0, (24)
the solution of Eq. (20) is similar to the expression of

(15):
3
§_D=C‘99§'_a (25)

b
cos> 8
where

¢ _ _
—j PO - g (Bo)dt).
(26)

tane = tanf - exp

Using the method of characteristics again, the e-
quation for ¢ in Eq. (21) can be changed into three
differential equations:

dé

de = 0 = sinfcosff(¢), (27)
d¢ _ 4 _ -
dr = $ = g(9), (28)
9 5 = Q. (29)
dr

The boundary condition is
(=0, =n/2,r =0) =0. (30)

Solving Eq. (29), we get

J- h{zg,o)drg
, 0
=t 31
¢ cos* 8 (31)
where

h(r,0) = cos’ + Q. (32)

At the same time, the expressions for r and ¢

are
¢ _
. :j 2 ($0)d%s, (33)
n/2

and
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“1(4g)ddo ],

(34)
respectively. It should be noted that Eq. (34) and
Eq. (26) have the same forms.

tano = tand - exp

é
-[ 70 -5
/2

3 The expression for the dispersion terms

It is a key problem to analyze the expression of
P, the expression includes several correlation terms
involving the information of ¢ . Based on the result
of ¢, we can relate P to the mean probability func-
tion, and the correlation terms can be changed into

Lagrangian fluid velocity correlations.

Considering Eq. (21), we have

¢’

20 3tanfyp

e ] o
" sinfcosf + F($) $ |

Substituting Eq. (35) into Eq. (22), the expres-
sion of P can be written as

- P = é%Q +

. & ,)890'
- = . 36)
7 g ff o6 (
From Eq.(31), ¢ /8% is given by
or * Oh{zg,0) o
¢’ _(h(f"’)aqb jo 25 970" o
o9 cos’ 8
_ sinocoso - £(F oh(zg,0) )
_ ( Q cos> @ jg Jo dzo
g
(37)
Letting
sinocosg + f[7 2h{ry, 0)
= smeggse S S22 C4n, (38)
we have
op’ _(1-2aQ
and

o}

-P= Q-[é’ + A 4—_”. (40)
g o8

The integral in Eq. (38) involves the mean prob-

ability function along the orbits. Since the mean

probability function is unknown, we assume that the

expression of A is determined by Eq. (25), which is

the solution of the equation for the mean probability

function neglecting the dispersion terms.

Considering Eq. (24), the expression for cos 0+
Q can be written as

cos’d + Q =cos’f - (?f - g )z;:
g, o(cos’d + ¢)
=& _ —— 41
(ff g o (4D

Substituting Eq. (25) into Eq. (41) we have

cos’d - Q= 3¢ - (f’—-f—g
g

= H($,0). (42)

“Isin’gcos’ o

According to Eq. (33), the integral in Eq. (38)
can be changed into the integral along the angle ¢.
The new expression of A is

5cos’s — SJ 1 [ . f )
A= T . — =g’ | dég, (43
f g_) W2 g 4 g8 1 “43)
58
where the expression for o is determined by
Eq. (34).

Combined with the above equation, Eq. (40)
gives the final expression of the correlation terms. To
simplify the expressions, we let
a, = sinpcos$,

a; = cos2$, a3 = sin¢cos$,

(44)
by = — 2sinpcos$, b, = sin’$, b3 = cos’$,
)
_ 1
c1 = g+ (5cos’c — S)J = _ibl)dsbo,
2 8 g
J¢2 = g+ (5cos’s — 3) j é ébz)dsﬁo,
> & g
_ 1
c3 = g + (5cos’c — S)J = _ib3)d¢0
2 g g
(46)

Thus we have
= Zaiei s

= Zbie;,
L

1 ’
= - CE; . (47)
f g Z
The expression of P is in the following form:

—  sinfcosf . 9
P=——: Z[ai(bj+cj)-e,ej]-—¢

A

g - a0
1 7. g

= [b:(b; + ¢;) - s

g Z o) el of
3sin’8

T, E[a(b+6) e .
(48)
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From the above equations, we can relate the cor-
relation terms to the mean probability function and its
gradients in the orientation space. According to the

definition (6), e:e; is the Lagrangian fluid velocity
correlation. Combined with Eq. (20), Eq. (48) pro-
vides a bridge to understand the influence of turbulent
fluids on the orientation distribution of cylindrical
particles suspended in the flows.

The expressions of the coefficients ¢; are not in
the apparent form because of the involved integrals a-
long the angle $. These integrals can be calculated
numerically for general planar flows. However, for
simple planar shear flows, these coefficients can be
given directly.

For shear flows, the mean fluid motion is de-

fined as;
€1 = &3 = 0. (49)

The expressions for f and g are
f = sin$cosse,,
S = sinpeostes (50)
g = — sin“%e,.
Substituting Egs. (49)—(50) into Eq. (34), we
have
tans = tanfsin®. (51)

At the same time, the coefficients c; can be cal-

culated directly by

Ny 5 )

c1 = sincoss ( 1 + tan®@sin®$ 3)s

Cy = O, (52)
I S U (—5__ _ )

€3 =7 o8 # 1 + tan®dsin’¢ 3)-

4 Conclusion

The self-governed equation for mean probability
function has been proposed. Two key steps are adopt-
ed in obtaining this equation. One step is to solve the
equation for the fluctuating probability function by
using the method of characteristics. The solution of
the fluctuating equation includes an integral along the

particle orbits described by Eq. (33). To avoid the
difficult problem of considering the coupled mean and
fluctuating equations, the second key step is to deter-
mine the dispersion coefficients by using the solution
of the simplified mean equation for the probability
function. In this way, the dispersion terms, which
represent the fluctuating effect of turbulence, are re-
lated to Lagrangian fluid velocity correlations.
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